100_005 DEF

Discrete Exponent Function (1/14)

The Discrete Exponent Function (DEF) used in cryptography firstly was introduced in the cyclic
multiplicative group Z,” = {1, 2, 3, ..., p-1}, with binary multiplication operation * mod p, where p is
prime number. Further the generalizations were made especially in Elliptic Curve Groups laying a
foundation of Elliptic Curve CryptoSystems (ECCS) in general and in Elliptic Curve Digital Signature
Algorithm (ECDSA) in particular.

Let g be a generator of Z," then DEF is defined in the following way:
DEF (x) = g*mod p = «;
DEF argument x is associated with the private key — PrK (or other sccg%aramctcrs) and therefore we will

label it in red and value « is associated with public key — PuK (or other Secret parameters) and therefore we
will label it in green.

In order to ensure the security of cryptographic protocols, a large prime number p is chosen. This prime
number has a length of 2048 bits, which means it is represented in decimal as being on the order of 22%8, or
approximately p ~ 22048,

In our modeling with Octave, we will use p of length having only 28 bits for convenience. We will deal also
with a strong prime numbers.

Discrete Exponent Function (2/14)

Definition. Binary operation * mod p in ZP“ is an arithmetic multiplication of two integers called operands

and taking the result as a residue by dividing by p. éfﬂ / 4/
For example, letp=ll,thenZﬁ={l,2,3,...,]0},then5*8m0d11=40m0d I1=7 where 7€ Z,°. N 33 2
In our example the residue of 40 by dividing by 11 is equal to 7,i.e., 40 =3 * 11 + 7. Z

Then 40mod 11 =33+ 7)mod 11 =33 mod 11 + 7mod 11)mod 11 =(0 + 7) mod 11 =7.
Notice that 33 mod 11 =0and 7mod 11 =7.

Definition: The integer g is a generator in Z," if puwcs‘infg it ?}a integer exponent values x all obtained
numbers that are computed mod p generates all elements in in Z,".

So, it is needed to have at least p-1 exponents x to generate all p-1 elements of Z,". You will see that exactly
p-1 exponents x is enough.
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Discrete Exponent Function (3/14)
Let I be the set of generators in Z,". How to find a generator in Z,"?

In general, it is a hard problem, but using strong prime p and Lagrange theorem in group theory the
generator in Zp* can be found by random search satisfying two following conditions.

Forall gel’
g% # 1 mod p; and g2 # | mod p.

Fermat little theorem: If p is prime then for all integers n:

i”'=1 mod p.
Corollaries: 1. The exponent p-1 is equivalent to the exponent 0, since i’ = i*! =1 mod p.
2. Any exponent e can be reduced mod (p-1), i.e.
imod p = pe™ed - mod p.
3. All non-equivalent exponents x are in the set Z, , = {0, 1, 2, ..., p-2}.
4. Sets Z,, and Z," have the same number of elements.

Discréte Exponent Function(4/14)
In Z, , addition +, multiplication * and subtraction - operations are realized mod (p-1).
Subtraction operation (fi-d) mod (p-1) is replaced by the following addition operation (/1 + (-d)) mod (p-1)).

Therefore, it is needed to find -d mod (p-1) such that d + (-d) = 0 mod (p-1), then assume that
-d mod (p-1) = (p-1-d).
Indeed, according to the distributivity property of modular operation
(d+ (-d)) mod (p-1) = (d + (p-1-d) mod (p-1) = (p-1) mod (p-1) = 0.

Then
(h-d) mod (p-1)=(h + (p-1-d)) mod (p-1)
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Discrete Exponent Function (5/14)

Statement: 1f greatest common divider between p-1 and i is equal to 1, i.e., ged(p-1, i) = 1, then there
exists unique inverse element ' mod (p-1) such that i # ' mod (p-1) = 1. This element can be found by
Extended Euclide algorithm or using Fermat little theorem. We do not fall into details how to find "' mod
(p-1) since we will use the ready-made computer code instead in our modeling.

Division operation / mod (p-1) of any element in Z,, by some element { is replaced by multiplication *
operation with i'mod (p-1) if ged(i, p-1)= 1 according to the Statement above.

To compute u/i mod (p-1) it is replaced by the following relation & * i* mod (p - 1) since

u/imod (p-1) = u * i mod (p-1).

Discrete Exponent Function (6/14)

Example 1I: Let for given integers u, x and h in Z,, we compute exponent s of generator g by the
expression
s=u+xh.
Then
g*mod p = g*md - mod p.
Therefore, s can be computed mod (p-1) in advance, to save a multiplication operations, i.e.
s =u+xh mod (p-1).
Example 2: Exponent s computation including subtraction by xr mod (p-1) and division by i in Z, ; when

ged(i, p-1)=1.
s = (h - xr)i'' mod (p-1).

Firstly d = xr mod (p-1) is computed:

Secondly -d = -xr mod (p-1) = (p-1-d) is found.

Thirdly i mod (p-1) is found.

And finally exponent s = (& + (p-1-d))i* mod (p-1) is computed.

Discréte Exponent Funétion (7/14)

Referencing to Fermat little theorem and its corollaries, formulated above, the following theorem can be
proved,
Theorem. If g is a generator in Zp* then DEF provides the following 1-to-1 mapping

DEF:Z,,— Z, .
Parameters p and g for DEF definition we name as Public Parameters and denote by PP = (p, g).

Example: Strong prime p =11, p=2 %5+ 1, then ¢ = 5 and ¢ is prime. Then p-1 = 10.
Z, =1{1,2,3,..,10}
Z,=10,1,2,...,9}
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Discrete Exponent Function (8/14)

The results of any binary operation (multiplication, addition, etc.) defined in any finite group is named
Cayley table including multiplication table, addition table etc.

A . S .. o * o
Multiplication table of multiplicative group Z,,” is represented below. ZM = -< 1,2, 3/ R {ﬁ} wr Q/////
Multiplication  Z11%

tab. mod 11 ; 7
. 1 2 3 4 5 6 7 P 9 1o Values of inverse elements in Z11* A/f% %/’_
1
1 1 2 3 4 5 CTD/?/sT 10 1'= 1 mod 11 -@
2 20 4 6 8 10 305 7 9 272 6 mod 11
3 3 6 9 ] 4 7 10 2 5 8 3_|=4n10d 11 2 Z
: o 11 =
4 4 8 1 5 9 2 6 10 3 7 4'=3 mod 11 /
5 5100 4 9 3 8 2 7 I 6 5'=9 mod 11
6 6 1| 7 2 8 3 9 4 10 5 6"'=2mod 11 2 Wmﬁ/{/ 1
7 7 3 10 6 2 9 s 1 8 4 7'=8mod 11 25 odil = 6.
8 8 5 2 10 7 4 1 9 6 3 8"'=7 mod 11 —
9 9 7 5 3 1 10 8 6 4 2 9"'= 5 mod 11 5 oyadt =9
0 10 9 8 6 5 4 3 2 1 10"=10 mod 11
>> wplivv (6, 414) = 9
s> mod (5%, 40) = 4
Discrete Exponent Function (9/14) DEF (x)=g*'mod p = a;
The table of exponent values for p =11 in Z,," computed mod 11 and is presented in table below P- 1 =10

Notice that according to Fermat little theorem for all ze Z,", z/1=z""=7"=1 mod 11. SZ/M = —< 4,2,3,- . ) /[07['
Exponent | Z11%

tab. mod 11 List ofgeneiators when //, = .{27 4, 7, X]—
A 0 1 2 3 4 5 6 7 8 9 [0 q=35
o,
y oy uy n oy nu oy y y oy il ) S 407 ge//M/Uzafbﬁ’}
2 I 2 4 8 5 10 9 7 3 6 1 2% modl!l&2% modll
3 1 3 9 5 4 1 3 9 5 4 1 1 X
4 1 4 5 9 3 1 4 5 9 3 1 Zﬂ%o
5 1 5 3 4 9 1 5 3 4 9 1 P ~ 7
6 16 3 7 9 100 5 8 4 2 1 6% modIl &6+l mod I (/\/ ools
7 1 75 2 3 10 4 6 9 8§ 1 741 mod 11 & 7°#1 mod 11 P =
8 1 8 9 6 4 100 3 2 5 7 1 84 modll&8= modll ;f?
9 19 4 3 s 1 9 4 3 35 1 —4/(121 ;;»—‘/P'
10 11 1 o1 1 1w o1 10 1 101

100_005 DEF Page 4



Let I be the set of generators i ., 11*' How to find a generator in ZP*‘?

In general, it 1s a hard problem, but using strong prime p and Lagrange theorem in group theory the 5
generator in Z," can be found by random search satistying two following conditions ¢ (R strovi g prive? Z.

Forallger | chovse >z 4 = randi ([2) i a 4/(7‘044{ previe z‘é P i priwme
1 mod p; and £2% 1 mod p. an = 4 Wh(/ﬂ

/
g — it pravme

Fermat little theorem: If p 1s prime then for all integers §:

i’1=1 mod p.

Corollaries: 1. The exponent p-1 is equivalent to the exponent 0, since i*=#1 = mod p. 22> [7 = g@ﬁ 627’49 W? /b r 2 w1l ng)

2. Any exponent e can be reduced mod (p-1),1.¢e.

i“mod p = g™t @D mod p.

- All non-equivalent exponents x are n the set 2, , = {0, 1,2, ... p-2}.

- Sets 7, , and Z," have the same number of elements.
TL»{ 5J y% ,cxﬁpwm?z X 0% DEF DEF (x) = g*mod p = a.
nep |1
o=y ¥ VWW/?@ end ) wod P (with exeepttpr) 4, = * mod 10 a/m// rﬁ/ D
Tpoo =40,4,2, -y p-2}; thhey p=11 &, =Lot,2, 591}
The set p‘f vl Lk p% DEF DEF,(x)=g'modp = a.
¥
e =442 2, -~ ;-4 }
* <
| Tpos] 2\Z =t 3t (20 =12
Corvltary: DEF provides @ 14—ty - { @tvai zaeyins Z is ?Zﬁéfﬂj_ﬁh
== e X
Dl/lﬁ o gZOP__{ - ZF
X a
F=m wastrong prime since P =2.5 +1
9 =5 i3 pripme

£ oW
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Diserete Exponént Function'(10/14)

Notice that there are elements satisfying the following different relations, for example:
3°=1mod 11 and 32% 1 mod 11.
The set of such elements forms a subgroup of prime order ¢ = 5 if we add to these elements the neutral
group element 1.
This subgroup has a great importance in cryptography we denote by
G;=1{1,3,4,5,9}.
The multiplication table of G5 elements extracted from multiplication table of Z,," is presented below.

Multiplication | G5 Exponent G5

tab. mod 11 Values of inverse tab. mod 11
* 1 3 4 5 9 elements in G ~ 0 1 2 3 4 5
1 1 3 4 5 9 1"'=1 mod 11 1 1t 11
3 3 9 1 4 5 3= 4 mod 11 3 1 30 9 5 4 1
4 4 1 5 9 3 4'=3mod 11 4 1 4 5 9 3 ]
5 5 4 9 3 1 5“9 mod 11 5 1 5 3 4 9 1
9 9 5 3 1 4 9"'= 5 mod 11 9 1 9 4 3 501

Discrete Exponent Function (11/14)

Notice that since Gj is a subgroup of Z,," the multiplication operations in it are performed mod 11.
The exponent table shows that all elements {3, 4, 5, 9} are the generators in Gs.
Notice also that for all ye {3, 4, 5, 9} their exponents 0 and 5 yields the same result, i.e.
Y =v5=1mod 11.
This means that exponents of generators y are computed mod 5.

This property makes the usage of modular groups of prime order ¢ valuable in cryptography since they
provide a higher-level security based on the stronger assumptions we will mention later.

Therefore, in many cases instead the group Zpw defined by the prime (not necessarily strong prime)
number p the subgroup of prime order G, in ZP* is used.

In this case if p is strong prime, then generator y in G, can be found by random search satisfying the
following conditions

v4=1 mod p and y*+ | mod p.

Analogously in this generalized case this means that exponents of generators y are computed mod ¢. In
our modeling we will use group Zp“ instead of G, for simplicity.
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Discrete Exponent Function (12/14)

Let as above p=11 and is strong prime and generator we choose g=7 from the set '={2, 6, 7, 8}.
Public Parameters are PP=(11,7), Then DEF ,(x) = DEF(x) is defined in the following way:
DEF.(x)=7*"mod 11 = a;
DEF;(x) provides the following 1-to-1 mapping, displayed in the table below.
x 0 1 2 3 4 5 6 7 8 9 10 11213 14
7" mod p=a 1 7 5 2 3 10 4 6 9 8 1 7 5 2 3

You can see that « values are repeating when x =10, 11, 12, 13, 14, etc. since exponents are reduced mod
10 due to Fermat little theorem.

The illustration why 7% mod p values are repeating when x =10, 11, 12, 13, 14, etc. is presented in
computations below:

10mod 10=0; 7'=7= 1modl1l= 1.

I1mod 10=1; 7M=7'= Tmod1l= 7.

[2mod 10=2; 712=72= 49mod 11 = 5.

13mod 10=3; 7¥=7"=343mod 11 = 2.

14 mod 10 =4; 7"=74=2401 mod 11 = 3.
etc.

Discrete Exponent Function (13/14)

For illustration of 1-to-1 mapping of DEF-(x) we perform the following step-by-step computations.

xeZ,, aeZ,’
7'=1 mod 11 0 —1r—11
7'=7 mod 11 1 2
7°=5mod 11 | 2 13
7°=2 mod 11 | 3 4
=3 mod 11 4 5
7=10mod 11 5 6
*~4mod1l 6 )2
7' =6 mod 11 7 8
7°=9 mod 11 8 9
7’=8 mod 11 9 10

It is seen that one value of x is mapped to one value of «.
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Discrete Exponent Function (14/14)

But the most in interesting think is that DEF is behaving like a pseudorandom function.
It is a main reason why this function is used in cryptography - classical cryptography.

To better understand the pseudorandom behaviour of DEF we compare the graph of "regular" sine
function with "pseudorandom" DEF using Octave software.

>> p128sin >> pl28def

xrange = 16 * pi; p=127;

step = xrange/128; g=23;

x = 0:step:xrange; x=0:p-1;

y = sin(x); a =mod_expv(g, x, p);

comet(x, y) comet(x, a:l

°"!|'i|'|‘lglll":|. ||| r"’|| ' I|‘|||'||.|I

i muu Ik Il m‘\ ll"'f |
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