Discrete Exponent Function (1/14)

The Discrete Exponent Function (**DEF**) used in cryptography firstly was introduced in the cyclic multiplicative group $\mathbf{Z}_p^* = \{1, 2, 3, ..., p-1\}$, with binary multiplication operation * mod p, where p is prime number. Further the generalizations were made especially in *Elliptic Curve Groups* laying a foundation of *Elliptic Curve CryptoSystems* (ECCS) in general and in *Elliptic Curve Digital Signature Algorithm* (ECDSA) in particular.

Let g be a generator of \mathbb{Z}_p^* then **DEF** is defined in the following way:

$$\mathbf{DEF}_{o}(\mathbf{x}) = \mathbf{g}^{\mathbf{x}} \bmod \mathbf{p} = \mathbf{a};$$

DEF argument x is associated with the private key – PrK (or other secret parameters) and therefore we will label it in red and value a is associated with public key – PuK (or other secret parameters) and therefore we will label it in green.

In order to ensure the security of cryptographic protocols, a large prime number p is chosen. This prime number has a length of 2048 bits, which means it is represented in decimal as being on the order of 2^{2048} , or approximately $p \sim 2^{2048}$.

In our modeling with Octave, we will use p of length having only 28 bits for convenience. We will deal also with a strong prime numbers.

Discrete Exponent Function (2/14)

<u>Definition</u>. Binary operation * mod p in Z_p^* is an arithmetic multiplication of two integers called operands and taking the result as a residue by dividing by p.

For example, let p = 11, then $Z_p^* = \{1, 2, 3, ..., 10\}$, then $5 * 8 \mod 11 = 40 \mod 11 = 7$ where $7 \in Z_p^*$.

In our example the residue of 40 by dividing by 11 is equal to 7, i.e., 40 = 3 * 11 + 7. Then 40 **mod** 11 = (33 + 7) **mod** 11 = (33 mod 11 + 7 mod 11) **mod** 11 = (0 + 7) **mod** 11 = 7. Notice that 33 **mod** 11 = 0 and 7 **mod** 11 = 7.

<u>Definition</u>: The integer g is a generator in Z_p^* if powering it by integer exponent values x all obtained numbers that are computed **mod** p generates all elements in in Z_p^* .

So, it is needed to have at least p-1 exponents x to generate all p-1 elements of \mathbb{Z}_p^* . You will see that exactly p-1 exponents x is enough.

Discrete Exponent Function (3/14)

Let Γ be the set of generators in \mathbb{Z}_p^* . How to find a generator in \mathbb{Z}_p^* ?

In general, it is a hard problem, but using strong prime p and Lagrange theorem in group theory the generator in Z_p^* can be found by random search satisfying two following conditions.

For all $g \in \Gamma$

$$g^q \neq 1 \mod p$$
; and $g^2 \neq 1 \mod p$.

<u>Fermat little theorem</u>: If p is prime then for all integers n:

$$i^{p-1} = 1 \mod p$$
.

<u>Corollaries</u>: 1. The exponent p-1 is equivalent to the exponent 0, since $i^0 = i^{p-1} = 1 \mod p$.

2. Any exponent e can be reduced **mod** (p-1), i.e.

$$i^e \mod p = n^{e \mod (p-1)} \mod p$$
.

- 3. All non-equivalent exponents x are in the set $Z_{p-1} = \{0, 1, 2, ..., p-2\}$.
- 4. Sets Z_{p-1} and $Z_p^{\ *}$ have the same number of elements.

Discrete Exponent Function (4/14)

In \mathbb{Z}_{p-1} addition +, multiplication * and subtraction - operations are realized **mod** (p-1).

Subtraction operation (h-d) mod (p-1) is replaced by the following addition operation (h + (-d)) mod (p-1)).

Therefore, it is needed to find $-d \mod (p-1)$ such that $d + (-d) = 0 \mod (p-1)$, then assume that

$$-d \mod (p-1) = (p-1-d).$$

Indeed, according to the distributivity property of modular operation

$$(d + (-d)) \mod (p-1) = (d + (p-1-d) \mod (p-1) = (p-1) \mod (p-1) = 0.$$

Then

$$(h-d) \mod (p-1) = (h + (p-1-d)) \mod (p-1)$$

Discrete Exponent Function (5/14)

<u>Statement</u>: If greatest common divider between p-1 and i is equal to 1, i.e., gcd(p-1, i) = 1, then there exists unique inverse element $i^{-1} \mod (p-1)$ such that $i * i^{-1} \mod (p-1) = 1$. This element can be found by Extended Euclide algorithm or using Fermat little theorem. We do not fall into details how to find $i^{-1} \mod (p-1)$ since we will use the ready-made computer code instead in our modeling.

Division operation / **mod** (p-1) of any element in Z_{p-1} by some element i is replaced by multiplication * operation with i mod (p-1) if gcd(i, p-1) = 1 according to the *Statement* above.

To compute $u/i \mod (p-1)$ it is replaced by the following relation $u * \dot{r}^1 \mod (p-1)$ since

$$u/i \mod (p-1) = u * i^{-1} \mod (p-1).$$

Discrete Exponent Function (6/14)

<u>Example 1</u>: Let for given integers u, x and h in Z_{p-1} we compute exponent s of generator g by the expression

$$s = u + xh$$
.

Then

$$g^s \mod p = g^{s \mod (p-1)} \mod p$$
.

Therefore, s can be computed **mod** (p-1) in advance, to save a multiplication operations, i.e.

$$s = u + xh \mod (p-1)$$
.

<u>Example 2</u>: Exponent s computation including subtraction by $xr \mod (p-1)$ and division by i in \mathbb{Z}_{p-1} when $\gcd(i, p-1) = 1$.

$$s = (h - xr)i^{-1} \mod (p-1).$$

Firstly $d = xr \mod (p-1)$ is computed:

Secondly $-d = -xr \mod (p-1) = (p-1-d)$ is found.

Thirdly $i^{-1} \mod (p-1)$ is found.

And finally exponent $s = (h + (p-1-d))i^{-1} \mod (p-1)$ is computed.

Discrete Exponent Function (7/14)

Referencing to Fermat little theorem and its corollaries, formulated above, the following theorem can be proved.

<u>Theorem.</u> If g is a generator in Z_p^* then **DEF** provides the following 1-to-1 mapping

DEF:
$$Z_{p-1} \rightarrow Z_p^*$$
.

Parameters p and g for **DEF** definition we name as Public Parameters and denote by PP = (p, g).

Example: Strong prime p = 11, p = 2 * 5 + 1, then q = 5 and q is prime. Then p-1 = 10.

$$Z_{11}^* = \{1, 2, 3, ..., 10\}$$

$$Z_{10} = \{0, 1, 2, ..., 9\}$$

Discrete Exponent Function (8/14)

The results of any binary operation (multiplication, addition, etc.) defined in any finite group is named Cayley table including multiplication table, addition table etc.

Multiplication table of multiplicative group Z_{11}^* is represented below.

In= 11,23,	10}	* mod M
Que (1121)	,	

Multiplication tab. mod 11		Z11*									
	*	1	2	3	4	5	6	7	8	9	10
	1	1	2	3	4	5	6	7	8	9	10
	2	2	4	6	8	10) 3	5	7	9
	3	3	6	9	1	4	7	10	2	5	8
	4	4	8	1	5	9	2	6	10	3	7
	5	5	10	4	9	3	8	2	7	1	6
	6	6	1	7	2	8	3	9	4	10	5
	7	7	3	10	6	2	9	5	1	8	4
	8	8	5	2	10	7	4	1	9	6	3
	9	9	7	5	3	1	10	8	6	4	2
1	10	10	9	8	7	6	5	4	3	2	1

Values of inverse elements in Z11* $1^{-1} = 1 \mod 11$ $2^{-1} = 6 \mod 11$ $3^{-1} = 4 \mod 11$ $4^{-1} = 3 \mod 11$ $5^{-1} = 9 \mod 11$ $6^{-1} = 2 \mod 11$ $7^{-1} = 8 \mod 11$ $8^{-1} = 7 \mod 11$ $9^{-1} = 5 \mod 11$ $10^{-1} = 10 \mod 11$

12 111 2/2 mod 11= 2*2 mod 11=1 2 mod11 = 6. 5^{-1} mad M = 9

>>
$$Mulinv(5,11) = 9$$

>> $mod(5*9,11) = 1$

Discrete Exponent Function (9/14)

$$\mathbf{DEF}_{g}(\mathbf{x}) = \mathbf{g}^{\mathbf{x}} \bmod \mathbf{p} = \mathbf{a};$$

The table of exponent values for p = 11 in Z_{11}^* computed **mod** 11 and is presented in table below. p - 1 = 10Notice that according to Fermat little theorem for all $z \in Z_{11}^*$, $z^{p-1} = z^{10} = z^0 = 1$ **mod** 11. $Z_{11}^* = \{1, 2, 3, \dots, 10\}$

Exponent tab. mod 11	Z11*										
^	0	1	2	3	4	5	6	7	8	9	10
1	1	1	1	1	1	1	1	1	1	1	1
2	1	2	4	8	5	10	9	7	3	6	1
3	1	3	9	5	4	1	3	9	5	4	1
4	1	4	5	9	3	1	4	5	9	3	1
5	1	5	3	4	9	1	5	3	4	9	1
6	1	6	3	7	9	10	5	8	4	2	1
7	1	7	5	2	3	10	4	6	9	8	1
8	1	8	9	6	4	10	3	2	5	7	1
9	1	9	4	3	5	1	9	4	3	5	1
10	1	10	1	10	1	10	1	10	1	10	1

List of generators when

 $\Gamma = \{2, 6, 7, 8\}$ q = 540% generators in Lio $2^2 \neq 1 \mod 11 \& 2^5 \neq 1 \mod 11$ $6^2 \neq 1 \mod 11 \& 6^5 \neq 1 \mod 11$ $7^2 \neq 1 \mod 11 \& 7^5 \neq 1 \mod 11$ $8^2 \neq 1 \mod 11 \& 8^5 \neq 1 \mod 11$

Let Γ be the set of generators in Z_p^* . How to find a generator in Z_p^* ? In general, it is a hard problem, but using strong prime p and <u>Lagrange theorem in group theory</u> the generator in Z_p^* can be found by random search satisfying two following conditions. if p is a strong prime. For all $g \in \Gamma$: choose >> g = randi(p)p is a strong prime if P is prime $\mathscr{I} \neq 1 \mod p$; and $\mathscr{I} \neq 1 \mod p$. and P=2,9+1, when *Fermat little theorem*: If *p* is prime then for all integers *i* 9, - is prime $i^{p-1} = 1 \mod p$. <u>Corollaries</u>: 1. The exponent p-1 is equivalent to the exponent 0, since $i^0 = i^{p-1} = 1 \mod p$. >> p = genstrongprime (28)2. Any exponent e can be reduced **mod** (p-1), i.e. $i^e \mod p = i^{e \mod (p-1)} \mod p$. 3. All non-equivalent exponents \mathbf{x} are in the set $Z_{p-1} = \{0, 1, 2, \dots, p-2\}$ 4. Sets Z_{p-1} and Z_p^* have the same number of elements The set of exponents X of DEF $DEF_g(x) = g^x \mod p = a$; $+ g - g \times \mod b$ and $\mod p$ (with exception) $+ g - g \times \mod 10$ and $\mod p$ $\mathcal{L}_{p-1} = \{0, 1, 2, \dots, p-2\}; \text{ when } p = 11 \longrightarrow \mathcal{L}_{10} = \{0, 1, 2, \dots, 9\}$ The set of values of $D \in F$ $DEF_g(x) = g^x \mod p = a$; $\mathcal{L}_{p} = \{1, 2, 3, --, p-1\}$ $|\mathcal{I}_{p-1}| = |\mathcal{I}_{p}^{*}| = p-1; p = 11$ $|\mathcal{I}_{10}| = |\mathcal{I}_{11}^{*}|$ Corollary: DEF provides a 1-to-1 atvairdavina if q is generator. $DEF_q: \mathcal{Z}_{p-1} \longrightarrow \mathcal{Z}_p^*$ P = M is a strong prime since P = 2.5 + 19 = 5 is prime

Discrete Exponent Function (10/14)

Notice that there are elements satisfying the following different relations, for example:

$$3^5 = 1 \mod 11$$
 and $3^2 \neq 1 \mod 11$.

The set of such elements forms a subgroup of prime order q = 5 if we add to these elements the *neutral* group element 1.

This subgroup has a great importance in cryptography we denote by

$$G_5 = \{1, 3, 4, 5, 9\}.$$

The multiplication table of G_5 elements extracted from multiplication table of Z_{11}^* is presented below.

Multiplication tab. mod 11	<i>G</i> 5				
*	1	3	4	5	9
1	1	3	4	5	9
3	3	9	1	4	5
4	4	1	5	9	3
5	5	4	9	3	1
9	9	5	3	1	4

Values of inverse elements in G ₅					
1 ⁻¹ = 1 mod 11					
$3^{-1} = 4 \mod 11$					
$4^{-1} = 3 \mod 11$					
$5^{-1} = 9 \mod 11$					
$9^{-1} = 5 \mod 11$					

Exponent tab. mod 11	<i>G</i> 5					
^	0	1	2	3	4	5
1	1	1	1	1	1	1
3	1	3	9	5	4	1
4	1	4	5	9	3	1
5	1	5	3	4	9	1
9	1	9	4	3	5	1

Discrete Exponent Function (11/14)

Notice that since G_5 is a subgroup of Z_{11}^* the multiplication operations in it are performed **mod** 11.

The exponent table shows that all elements $\{3, 4, 5, 9\}$ are the generators in G_5 .

Notice also that for all $\gamma \in \{3, 4, 5, 9\}$ their exponents 0 and 5 yields the same result, i.e.

$$\gamma^0 = \gamma^5 = 1 \mod 11.$$

This means that exponents of generators γ are computed **mod** 5.

This property makes the usage of modular groups of prime order q valuable in cryptography since they provide a higher-level security based on the stronger assumptions we will mention later.

Therefore, in many cases instead the group Z_p^* defined by the prime (not necessarily strong prime) number p the subgroup of prime order G_q in Z_p^* is used.

In this case if p is strong prime, then generator γ in G_q can be found by random search satisfying the following conditions

$$\gamma^q = 1 \mod p$$
 and $\gamma^2 \neq 1 \mod p$.

Analogously in this generalized case this means that exponents of generators γ are computed **mod** q. In our modeling we will use group Z_p^* instead of G_q for simplicity.

Discrete Exponent Function (12/14)

Let as above p=11 and is strong prime and generator we choose g=7 from the set $\Gamma = \{2, 6, 7, 8\}$. Public Parameters are $\mathbf{PP} = (11,7)$, Then $\mathbf{DEF}_{g}(x) = \mathbf{DEF}_{7}(x)$ is defined in the following way:

$$DEF_7(x) = 7^x \mod 11 = a$$
;

 $\mathbf{DEF}_{7}(\mathbf{x})$ provides the following 1-to-1 mapping, displayed in the table below.

x	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$7^{x} \mod p = a$	1	7	5	2	3	10	4	6	9	8	1	7	5	2	3

You can see that a values are repeating when x = 10, 11, 12, 13, 14, etc. since exponents are reduced **mod** 10 due to *Fermat little theorem*.

The illustration why $7^x \mod p$ values are repeating when x = 10, 11, 12, 13, 14, etc. is presented in computations below:

$$10 \mod 10 = 0$$
; $7^{10} = 7^0 = 1 \mod 11 = 1$.

11 mod
$$10 = 1$$
; $7^{11} = 7^1 = 7 \mod 11 = 7$.

$$12 \mod 10 = 2$$
; $7^{12} = 7^2 = 49 \mod 11 = 5$.

13 mod
$$10 = 3$$
; $7^{13} = 7^3 = 343 \mod 11 = 2$.

$$14 \mod 10 = 4$$
; $7^{14} = 7^4 = 2401 \mod 11 = 3$.

etc.

Discrete Exponent Function (13/14)

For illustration of 1-to-1 mapping of $\mathbf{DEF}_{7}(\mathbf{x})$ we perform the following step-by-step computations.

	$x \in Z_{10}$	$a \in Z_1$
$7^0 = 1 \text{ mod } 11$	0	
$7^1 = 7 \text{ mod } 11$	1	2
$7^2 = 5 \text{ mod } 11$	2	3
$7^3 = 2 \text{ mod } 11$	3	4
$7^4 = 3 \text{ mod } 11$	4	5
$7^5 = 10 \text{ mod } 11$	5	6
$7^6 = 4 \mod 11$	6	7
$7^7 = 6 \text{ mod } 11$	7	8
$7^8 = 9 \text{ mod } 11$	8	9
$7^9 = 8 \text{ mod } 11$	9	10

It is seen that one value of x is mapped to one value of a.

Discrete Exponent Function (14/14)

But the most in interesting think is that **DEF** is behaving like a *pseudorandom function*.

It is a main reason why this function is used in cryptography - classical cryptography.

To better understand the pseudorandom behaviour of **DEF** we compare the graph of "regular" **sine** function with "pseudorandom" **DEF** using Octave software.

